From Metabolonote
jump-to-nav Jump to: navigation, search

Sample Set Information

Title Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment
Description We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that w92% had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms.
Authors Miyako Kusano, Henning Redestig, Tadayoshi Hirai, Akira Oikawa, Fumio Matsuda, Atsushi Fukushima, Masanori Arita, Shin Watanabe, Megumu Yano, Kyoko Hiwasa-Tanase, Hiroshi Ezura, Kazuki Saito
Reference Kusano M et al. (2011) PLOS ONE 6: e16989

Link icon article.png

Link icon database.png Link icon dropmet.png

The raw data files are available at DROP Met web site in PRIMe database of RIKEN.

Data Analysis Details Information

Title In-house software
Description An original data file (.wiff) was converted to an unique binary file (.kiff) using in-house software (nondisclosure). Peak picking and alignment were performed using the another in-house software (nondisclosure), peaks were picked and aligned among samples automatically. By contrast with the detected m/z and migration time values of standard compounds including internal standards, peaks were annotated automatically using the same software. For normalization, the individual area of the detected peaks was divided by the peak area of the internal reference standards. Based on the calibration curves for standard compounds, peak area values were converted into values corresponding to amounts.

Personal tools
View and Edit Metadata