MS Description
|
After HS collection, the volatiles were th … After HS collection, the volatiles were thermally desorbed in splitless mode on a CTC CombiPAL autosampler (CTC analytics, Zwingen, Switzerland) connected to an Agilent 6890N gas chromatograph (Agilent Technologies, Wilmington, USA) for 0.1 min at the appropriate inlet temperature, as shown below. Each fiber was baked for 5 min by applying the appropriate conditioning temperature (Table 3).<br />
<br />
The capillary column used for the analysis was a 30-m×0.25-mm inner diameter fused-silica capillary column with a chemically bound 0.25-μL film Rxi-5 Sil MS stationary phase (RESTEK, Bellefonte, USA) with a tandem connection to a fused silica tube (1 m, 0.15 mm). A mass spectrometer column change interface (ms NoVent-J; SGE, Yokohama, Japan) was used to prevent air and water from entering the MS during column change over. Helium was used as the carrier gas at a constant flow rate of 1.0 ml/min. The temperature program started with a 2 min isothermal step at 50 °C, followed by temperature ramping at 15 °C to a final temperature of 260 °C, which was then maintained for 2 min. The transfer line to the mass spectrometer was set to 250 °C. The TOF mass spectrometer was a Pegasus 4D MS system (Leco, MI, USA) with an EI source set to 200 °C. The acceleration voltage was turned on after a solvent delay of 200 s. Mass spectra were monitored with an acquisition rate of 30 spectra/s and over a mass-to-charge ratio range of m/z = 30–550. ass-to-charge ratio range of m/z = 30–550.
|